Software Defect Prediction Based on Fuzzy Weighted Extreme Learning Machine with Relative Density Information
نویسندگان
چکیده
منابع مشابه
On Software Defect Prediction Using Machine Learning
The goal of this paper is to catalog the software defect prediction using machine learning. Over the last few years, the eld of software defect prediction has been extensively studied because of it's crucial position in the area of software reliability maintenance, software cost estimation and software quality assurance. An insurmountable problem associated with software defect prediction is th...
متن کاملSoftware Aging Prediction based on Extreme Learning Machine
In the research on software aging and rejuvenation, one of the most important questions is when to trigger the rejuvenation action. And it is useful to predict the system resource utilization state efficiently for determining the rejuvenation time. In this paper, we propose software aging prediction model based on extreme learning machine (ELM) for a real VOD system. First, the data on the para...
متن کاملSoftware Defect Prediction using Support Vector Machine
developing a defect free software system is very difficult and most of the time there are some unknown bugs or unforeseen deficiencies even in software projects where the principles of the software development methodologies were applied care-fully. Due to some defective software modules, the maintenance phase of software projects could become really painful for the users and costly for the ente...
متن کاملMachine Learning Techniques to Predict Software Defect
Machine learning techniques have been dominating in the last two decades. The recently published comprehensive state-of-the-art review (Mohanty et al., 2010) justifies this issue. The ability of software quality models to accurately identify critical faulty components allows for the application of focused verification activities ranging from manual inspection to automated formal analysis method...
متن کاملKernel CCA Based Transfer Learning for Software Defect Prediction
An transfer learning method, called Kernel Canonical Correlation Analysis plus (KCCA+), is proposed for heterogeneous Crosscompany defect prediction. Combining the kernel method and transfer learning techniques, this method improves the performance of the predictor with more adaptive ability in nonlinearly separable scenarios. Experiments validate its effectiveness. key words: machine learning,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Programming
سال: 2020
ISSN: 1875-919X,1058-9244
DOI: 10.1155/2020/8852705